Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes

Identifieur interne : 004E25 ( Main/Exploration ); précédent : 004E24; suivant : 004E26

Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes

Auteurs : C. D. Barry [Royaume-Uni] ; D. R. Martin [Royaume-Uni] ; R. J. P. Williams [Royaume-Uni] ; A. V. Xavier [Royaume-Uni]

Source :

RBID : ISTEX:2D67C670FD5B2B9B660E12DB0B4E66C593F07490

Descripteurs français

English descriptors

Abstract

Abstract: The conformation of cyclic 3′,5′-adenosine monophosphate in deuterium oxide has been determined at pH 2.0 and pH 5.5, using lanthanide ions as paramagnetic nuclear magnetic resonance probes. The lanthanide ion-induced shifts in the nuclear magnetic resonance energy for a given nucleus are dependent on the geometric position of that nucleus relative to the bound lanthanide ion. As expected, these shifts are pseudocontact in origin and are consistent with axial symmetry. Analysis of the concentration dependence of the shift shows that the lanthanide ion is bound to the phosphate entity giving a 1:1 complex. Further, base stacking and other intermolecular interactions are negligible. To confirm the conformation, which is found from a computer search with the above shift data, we have measured the changes in relaxation times, T1 and T2, induced by binding of Gd3+. The geometric dependence of these relaxation effects is different from that of shifts, being dependent only on distance. The agreement of these data with the computer “shift” conformation is satisfactory. Some 31P nuclear magnetic resonance experiments were done to confirm the metal co-ordination position although, here, there are contact contributions to both shift and relaxation. The computer program finds the conformations that have the correct geometry to account for the shift data, by searching all possible conformations. Non-bond rotations were used as a method of changing the pucker of the phosphate and ribose rings, the position of the base being defined by a single bond rotation. The nuclear magnetic resonance data and minimum van der Waals' distances were used as “active filters” in the computer search. At both values of the pH we have found closely related families of solutions, with the pucker of the phosphate and ribose rings roughly similar to those in an approximate X-ray study of cyclic AMP. The orientation of the base varies with pH.

Url:
DOI: 10.1016/0022-2836(74)90111-9


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes</title>
<author>
<name sortKey="Barry, C D" sort="Barry, C D" uniqKey="Barry C" first="C. D." last="Barry">C. D. Barry</name>
</author>
<author>
<name sortKey="Martin, D R" sort="Martin, D R" uniqKey="Martin D" first="D. R." last="Martin">D. R. Martin</name>
</author>
<author>
<name sortKey="Williams, R J P" sort="Williams, R J P" uniqKey="Williams R" first="R. J. P." last="Williams">R. J. P. Williams</name>
</author>
<author>
<name sortKey="Xavier, A V" sort="Xavier, A V" uniqKey="Xavier A" first="A. V." last="Xavier">A. V. Xavier</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2D67C670FD5B2B9B660E12DB0B4E66C593F07490</idno>
<date when="1974" year="1974">1974</date>
<idno type="doi">10.1016/0022-2836(74)90111-9</idno>
<idno type="url">https://api.istex.fr/document/2D67C670FD5B2B9B660E12DB0B4E66C593F07490/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A02</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A02</idno>
<idno type="wicri:Area/Istex/Curation">000A02</idno>
<idno type="wicri:Area/Istex/Checkpoint">002621</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002621</idno>
<idno type="wicri:doubleKey">0022-2836:1974:Barry C:quantitative:determination:of</idno>
<idno type="wicri:Area/Main/Merge">005257</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:4366435</idno>
<idno type="wicri:Area/PubMed/Corpus">000885</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000885</idno>
<idno type="wicri:Area/PubMed/Curation">000885</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000885</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000885</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000885</idno>
<idno type="wicri:Area/Ncbi/Merge">000B59</idno>
<idno type="wicri:Area/Ncbi/Curation">000B59</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000B59</idno>
<idno type="wicri:doubleKey">0022-2836:1974:Barry C:quantitative:determination:of</idno>
<idno type="wicri:Area/Main/Merge">005239</idno>
<idno type="wicri:Area/Main/Curation">004E25</idno>
<idno type="wicri:Area/Main/Exploration">004E25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes</title>
<author>
<name sortKey="Barry, C D" sort="Barry, C D" uniqKey="Barry C" first="C. D." last="Barry">C. D. Barry</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Laboratory of Molecular Biophysics</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Martin, D R" sort="Martin, D R" uniqKey="Martin D" first="D. R." last="Martin">D. R. Martin</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Inorganic Chemistry Laboratory, University of Oxford Oxford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Williams, R J P" sort="Williams, R J P" uniqKey="Williams R" first="R. J. P." last="Williams">R. J. P. Williams</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Inorganic Chemistry Laboratory, University of Oxford Oxford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Xavier, A V" sort="Xavier, A V" uniqKey="Xavier A" first="A. V." last="Xavier">A. V. Xavier</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Inorganic Chemistry Laboratory, University of Oxford Oxford</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1974">1974</date>
<biblScope unit="volume">84</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="491">491</biblScope>
<biblScope unit="page" to="502">502</biblScope>
</imprint>
<idno type="ISSN">0022-2836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Approximate study</term>
<term>Axial symmetry</term>
<term>Barry</term>
<term>Base orientations</term>
<term>Base protons</term>
<term>Best agreement</term>
<term>Camp concentration</term>
<term>Complete molecule</term>
<term>Computer program</term>
<term>Computer search</term>
<term>Computer solution</term>
<term>Computers</term>
<term>Conformation</term>
<term>Cyclic</term>
<term>Cyclic AMP</term>
<term>Cyclic monophosphate</term>
<term>Dihedral rotations</term>
<term>Distance distance</term>
<term>Dysprosium</term>
<term>Dysprosium concentration</term>
<term>Europium</term>
<term>Gadolinium</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lanthanide</term>
<term>Lanthanide concentration</term>
<term>Lanthanide ions</term>
<term>Large number</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Metal concentration</term>
<term>Metal position</term>
<term>Methods</term>
<term>Molecular Conformation</term>
<term>Orthogonal views</term>
<term>Phosphorus Isotopes</term>
<term>Praseodymium</term>
<term>Proton</term>
<term>Pucker</term>
<term>Relaxation measurements</term>
<term>Resonance shift data</term>
<term>Ribose</term>
<term>Ribose rings</term>
<term>Shift data</term>
<term>Shift ratios</term>
<term>Small number</term>
<term>Solution table</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation moléculaire</term>
<term>Dysprosium</term>
<term>Europium</term>
<term>Gadolinium</term>
<term>Isotopes du phosphore</term>
<term>Méthodes</term>
<term>Ordinateurs</term>
<term>Praséodyme</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cyclic AMP</term>
<term>Dysprosium</term>
<term>Europium</term>
<term>Gadolinium</term>
<term>Phosphorus Isotopes</term>
<term>Praseodymium</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Approximate study</term>
<term>Axial symmetry</term>
<term>Barry</term>
<term>Base orientations</term>
<term>Base protons</term>
<term>Best agreement</term>
<term>Camp concentration</term>
<term>Complete molecule</term>
<term>Computer program</term>
<term>Computer search</term>
<term>Computer solution</term>
<term>Computers</term>
<term>Conformation</term>
<term>Cyclic</term>
<term>Cyclic monophosphate</term>
<term>Dihedral rotations</term>
<term>Distance distance</term>
<term>Dysprosium concentration</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lanthanide</term>
<term>Lanthanide concentration</term>
<term>Lanthanide ions</term>
<term>Large number</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Metal concentration</term>
<term>Metal position</term>
<term>Methods</term>
<term>Molecular Conformation</term>
<term>Orthogonal views</term>
<term>Proton</term>
<term>Pucker</term>
<term>Relaxation measurements</term>
<term>Resonance shift data</term>
<term>Ribose</term>
<term>Ribose rings</term>
<term>Shift data</term>
<term>Shift ratios</term>
<term>Small number</term>
<term>Solution table</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>AMP cyclique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Conformation moléculaire</term>
<term>Dysprosium</term>
<term>Europium</term>
<term>Gadolinium</term>
<term>Isotopes du phosphore</term>
<term>Méthodes</term>
<term>Ordinateurs</term>
<term>Praséodyme</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The conformation of cyclic 3′,5′-adenosine monophosphate in deuterium oxide has been determined at pH 2.0 and pH 5.5, using lanthanide ions as paramagnetic nuclear magnetic resonance probes. The lanthanide ion-induced shifts in the nuclear magnetic resonance energy for a given nucleus are dependent on the geometric position of that nucleus relative to the bound lanthanide ion. As expected, these shifts are pseudocontact in origin and are consistent with axial symmetry. Analysis of the concentration dependence of the shift shows that the lanthanide ion is bound to the phosphate entity giving a 1:1 complex. Further, base stacking and other intermolecular interactions are negligible. To confirm the conformation, which is found from a computer search with the above shift data, we have measured the changes in relaxation times, T1 and T2, induced by binding of Gd3+. The geometric dependence of these relaxation effects is different from that of shifts, being dependent only on distance. The agreement of these data with the computer “shift” conformation is satisfactory. Some 31P nuclear magnetic resonance experiments were done to confirm the metal co-ordination position although, here, there are contact contributions to both shift and relaxation. The computer program finds the conformations that have the correct geometry to account for the shift data, by searching all possible conformations. Non-bond rotations were used as a method of changing the pucker of the phosphate and ribose rings, the position of the base being defined by a single bond rotation. The nuclear magnetic resonance data and minimum van der Waals' distances were used as “active filters” in the computer search. At both values of the pH we have found closely related families of solutions, with the pucker of the phosphate and ribose rings roughly similar to those in an approximate X-ray study of cyclic AMP. The orientation of the base varies with pH.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
</region>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Barry, C D" sort="Barry, C D" uniqKey="Barry C" first="C. D." last="Barry">C. D. Barry</name>
</region>
<name sortKey="Martin, D R" sort="Martin, D R" uniqKey="Martin D" first="D. R." last="Martin">D. R. Martin</name>
<name sortKey="Williams, R J P" sort="Williams, R J P" uniqKey="Williams R" first="R. J. P." last="Williams">R. J. P. Williams</name>
<name sortKey="Xavier, A V" sort="Xavier, A V" uniqKey="Xavier A" first="A. V." last="Xavier">A. V. Xavier</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004E25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004E25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2D67C670FD5B2B9B660E12DB0B4E66C593F07490
   |texte=   Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024